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[Abstract]

summarizes the research progress of traditional Chinese medicine in treating femoral head necrosis by regulating

This paper reviews the research status of exosomal miRNAs in femoral head necrosis, and

exosomal miRNAs. Exosomal miRNAs show great potential in the treatment of femoral head necrosis by promoting
osteogenesis, inhibiting osteoclastogenesis, promoting angiogenesis, regulating inflammation, and controlling signaling
pathways. Meanwhile, exosomal miRNAs are helpful for the early diagnosis of femoral head necrosis. Traditional
Chinese medicine has unique advantages in the treatment of femoral head necrosis, and can exert therapeutic
effects by regulating the secretion and function of exosomal miRNAs.
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2 SMipEmiRNAZEONFHA B2 Hi ¢ME

T B A T B AT £ AP Je Sk B B O T ke 4 22 G
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miR —135b—5p #8 [1] & 45 2 (osteocalcin , OCN ) . ‘B M Y% 25 [
( bonesialoprotein , BSP ) . Runt fH 3¢ %% 5% K F 2 (runt - related
transcription factor—2 , RUNX2 ) Fl il H 40 Mg 45 5 Pk 5 s Rl
(osterix , Osx ) FI 5% M ‘B B [H] FE BT T4 (bone marrow derived
mesenchymal stem cells, BMSC ) 73 A )80 40 , ] HimiR -
135b-5p Al BEAR R —Fh A A& 1 JC I A Mobr &4, T2 W
ONFH!", 5 5544 PR AN A& miR —200b-3p Al miR -206 £ ONFH
22 S0k, AT N ONFHE- 12 Wi A Wb s 0o, s 1o
et SR G i S 7 245 SR 3R T, ONFHLAR 35 11375 H miR-93 -5p Al
miR-320af) & AT, X LEPEF P miRNAs 1TV ONFH 9 f 16
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AR SN RT 8L T I 22 BRI PR Fused M F1
B0 Sonic  Hedgehog 5 530 [ A4 1 P4 , 384 i A TG i Jok 9 Bz 4
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0 GE ORI AE A BCRE T L AR #EE B A8 & AE 85 11 2 (recombinant
human bone morphogenetic protein 2, BMP2) FIRUNX2 %5 il
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A& N 2 A K B F (vascular endothelial growth factor, VEGF)
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miR-21-5p B A ] 78 5T T 248 Ml (human  umbilical cord
mesenchymal stem cells, hUCMSCs) AR i &4 (hUCMSC -
Exos ) AT i I SRY —box % 5% Al -5 Fll Zeste 1 5 ¥~ [ U5 47 2
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TP FE BB Sk R 8 0L A8 79 26 B, B 17 B 3 2R 2, iPSC—~Exo
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A OCHE K Runx2  ALPHI B HE N, Jig 5 A= WA S PR e 41
Ak Wy Tl A 338 B 384005 3% 14y (peroxisome  proliferator—activated
receptor vy, PPARYy ) Fl1Zk i & 111 A5 1Y 22 35 K T B [R]
miR-27afE38 1 02 HEBMSCHLHE 7346 , i AR D5 234k , M
BB [ WA S ONFH B 2 0 2K 271 miR—26a 7E CD34+ 1
A RAT A RSN P SRR, AT ITHU VECS B L8 18
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FIERSIE M, 2 R BMSCs MG FE 2, L i i 6 P, DA 10 i
W R 8 2 8 R K BB S 48 528 o miR—155-5p 1T 3 3 17
BRI A R -3 R 16 1 , £ 2 B—catenin A% 5 57, 38 I A
B K A F Kk, AT AL BE BMS Cs A 14 78 1A B 43 fhie) 3k
5T BMSCs A9 SN A miR—150 6838 13 8 17 Gremlin—1 2 /%
F kB (NF—«B) il , 4111 il B J88 ¥K 7L 5 F —o (tumor necrosis
factor—o, TNF—o ) 175 M4 B AN ARSI T, SR 0E R AL A I,
e P F BMSCHIZNB A miR - 148a—3pHE i 12 41 il SmadiZ 1k
AT F 12655, fEBESMAD7-BCL2ZHIAE BEOCN Y 35 , T
HETBMSCs i B4 FE AN 4346 , BE1E ONFHI i &P, miR-217
AL 3H o 0 ] DKK 190 ) H e 3k AR 1 B—catenin A G N0r , 38
JIIRUNX2 .COL1A1fYERIA  SRHBMSCs ST AN 54310 i
FZEW,200 kDI EEE BEBBEA IAE BAE A (F1P200 )it 3%
TRRERS AR E A A 8, T IR BB IR 7T 5T T 4 A S A
miR-224-3pfYFik ,, LIRFIP200/Y3R 1A, N2 HUVECs)
HOTE R R ZEEE ) KM AR A B i R A miR-122-5p
FIBMSC—Exo, N i (7 A2 SPRY 2 , $2 15 52 1A It 4 1k B4 i 1)
TEME DT AR HE B 20 M R S 5 RN 43AE , B ONFHR P,
SR, T I AR miRN A 230 i B F 434k . BMSCs—Exo 1T
AT miR-532-5p , I HIAZ Z RIS P73 23k, DT il
B AN TG ) FAR SE AR T, AR HEONFHIY & R, iR 15 41
JH SR R 4 A A A miR — 148 7T 38 1 98 5 WS a/ i 24 IR 1 g AR
P2 PR230 5, BN IREE 3R R 45 & 2R (12 A Ak eIk
BB 52 MRy 23k KO (i it IR 431k, [ B g 7 400 e
e U 1 A1 WA A miR —148a B 8 2 [ A% ARS %2 (5 BH M: 40 Jg
ALP .RUNX2FIOCN/K -, #HI BMSCs 4 B B 434k rel, BIF 5T 35
B, miR-2147E 2 5 Bio-0ss B4 A BMSCsIH YT ONFHIZ #2 1, fig
T kB A A A B -5 M, PR T K o miR =708 B 3 2 7
[11Smad3 %3’ ~UTR, MHIRUNX2 ) F=35 , Tl BMSC I 1%
oAb, R 7 2 RS 43 A58 miR - 144 -3p A 8 1 ¥ 1) FZD4
I B —catenin % H A . RUNX2 R COL1A 1 AI%E 5% , Wi 311 41
BMSC 13458 B 73 AP BIFFE PR B miR—224-Sp b B2
BT R AL P BMSCs H 13, [6] B miR - 224 5p 7T 3 3 418 117)
Smaddiifil i, FEHBMSCs I BUIE 73t omiR—14 1 7] 38 1 418 ]
E2F3# il ONFHK S BMSCs H 5B 431k, AT i #E ONFHAY
g,
33 RBEERAE GHFAFREEE GHFNREEREX T
2 B R 2 DG Y P A P 1 25 R K R RT LSBT
AARIT 2B B 50, R E 0 IE W T Re st . & &
miR-326/BMSC~Exos, "3l I ¥E [T HDAC3, T I 4 SE 40 g I
TFIKF-Caspase— 17 P AHMEIR T-AHICHE 1K AR 3B
4 L 15 5 % 5 R A SR TG TR F 1 (signal  transducerand
activator of transcription 1,STATL).ZBEALSTAT1HIZ BEfk
NF-kB p651421% , M i 5B 40 L 0 8 10, Y O ) 7
T TRIMNIMA (exosomesderived from SMSCs,SMSC—Exos)
A 38 53 388 3% Matrilin =3, 0 (140 M A 2 (IL) -17A 31
PI3K/Akt/M L3 8 M0 RS 2 ML 1 (mammalian target of ra—
pamycin, mTOR )5 5% S 3l A3 , DA TRT 401 ) 2 i 248 e X
YRR . 40 i 7 36 i (Extracellular matrix, ECM ) F R f# A1 H

I B 451, SMSC — Exos 1 miR —320c fit 38 1 # i) ADAM 194 #i
PEWnUE 514 T, 904 ECM B ALERCE A i g8 v, D4 1E
WEBGE ™, SMSC—Exoid FikmiR-212-5p/5 , RETL[7] 74
FEETSH% 5% A F3(E74 Like ETS Transcription Factor 3,ELF3),
PR A TL- 18175 M ELF3 3Rk , DA T8 2 S 1
14977 3, DRSS T 1175 F: 1 1 40 AR R A5, ZENG. Z
HAFHOSR FHTL- 1 BAL FRFCR 40, 2R M T B G R MR
95 , AT 2R FH SMS C-ExotfFA T3 5 360, T HUE S B At
[ miR—130b—3p {3 F1 55 , [A] R SMSC—Exo g i B4 HE LDLZ
MAHH 56 78 4 12/ Akt/B —catenin {7 538 1, W6k 20 5B 40 A R
T VECM P& A AR 58 1 40 B D 19 3 b o e 0 & &4 200 i
(synovial fibroblasts,SFs)ELA MSCsHIFHE, FIFEH SHE M
TR IR A vh R AR RCHAE A - CD34 T 241 M SR SF A h
HE R Z— o CD34*THY LR 84 8 R B TR 1 T AR X 358
1o, RN THY 138 RT3 5 P R A 54k 2 5 1 A8 A 0, X — A
FEN B SR IR TR TR YT R,
3.4 AT ER AESMNMEANIRNAR S BEE A/
B B ZANHCNE SRS bR R 2R
Wnt/B—catenin X PI3K/ASE(5 538 I o M0 il miR-139-5pFRik
AL AE Wint/B—catenin{5 538 I , SR #E BMSCs B H 43165 T 77
miR-146a215 , RIS IS Wnt/B—cateninfs 518 1 , fE#F B,
0l 1 B o) A il miR-98—5p 3K , FI AEILIS PI3K/Aku/HE L&
TR EE-38 (glycogen synthase kinase—3[,GSK-3p) {7 5l
%, DTS 28 ] BMIP2, R 328 o i 200 R ) 34 7 A0 43 Aol 41
filmiR-212FmiR-384 5514 , i _E A RUNX2 R IE BRI E
(osteoprotegerin, OPG )/#% Fl F kB3 AR 1% AL R F FC 4 (receptor
activator of NF-kB ligand, RANKL )i i , %2 7 il 4 fhien,
miR—655-3p AT 1 il 2 e S ek 2 A 1 2 Y SRRl 1 )
Fik , BE BMP-2/Smad (5 538 I , MR 3 MC3T3-E 141
A B A T2, miR-195-5p 7] 3B 1 #U[(] SMURF 1,
P BMP-2/Smad/Aky/RUNX23E [ , M2 #EMC3T3-E1 40
BCE I L T,
4 HEHEIIFZEIMBEMIRNAKRILETTONFH

R A BRI ONFHI B A9 4, (EARYE JL & L]
FEIREE  ONFHJE T B B8 S W o B B A B RORG
JF AL 25 A , R (0 R 5 5 T A I B AR 56 A R e
(AT RETE SHARE T i TR 3%, AR 2 2 R 80k Ak
PRASEFE 43 0 SRR BN o B2, P B2 A N e 3R 3R
FERE R BRI R 3, SN A2, S IS, AT AN
B JRIEFE P AN SRS R T ONFHY B R S,
B 25 AT DL HE miRNA , e #F B0E M8 A sS85, i &
FEIRYT ONFHIWAE FHS,
4.1 PHFRET B H F IAEMIRNAL B %
410 (RIFRCE AR S Ak AR R 2R e
1 SE BE M R TIURL BE A0 T B 140 B P 184 0 (2 4 I
T2, MR EFE T T Agilad EJAmiR-21-5pBH Wik WUk 7EH
IR 2 72 RE RGN ALPYS 4 , sk 35 55 4k 3 L 9% BMP2
Runx2 .OCNZEIA , (R0 1 20 M0 5 5 4 Ak Al S i 22
N LR R AR AT A=y ] 3 5 ¥ R miR— 107 , T v B 40 i
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ALPTEYE R A & &, A2 #EBMP2 . Runx2 . OSXFOCNZR
ek, TS 3E A5 200 M 384 B R 43 A0 3 JE P2 2448
F I B ZHRON S, TE A [ miR-214, % Wnt/B—catenin
{55 i, fi 2F BB 40 L% 1 A CyelinD1 . Runx2 . Osx . Ocn
ALPRYZRIE , T2 11F A B 20 B P 184 R 43 A koo, DAZE 22 4y
125 )22 TR B 5 T R miR—200c-3p, T PAsmad 78935, {2
HEBMSCsH ALP . OC OSXFTRUNX2 A4 2305 , Ik i 40 g i
S0, TGS SRR S & B, AR R R R BRUS R 4t
BT M, ARG BB 40 M miR - 196a-3p 2 35 , 12 Runx2
OPN . ALPZE M1 323X , 2 W %6 AR 22 6838 i 48 9] Runx2 , $11 ]
miR-196a-3p 1% , it iF - 40 M ¥ 14 5 55 704k AR S b 52 56
W, =LA BTG, B EMCIT3-E1 L EPr &
FFOCN ALP H¥5% (BGP) .COL1FFEIA T , miR—204/19 %
KRB, [AlBF Runx2 . p-PI3K .p-Akt [ 5 TR, B = £ &
BAFREM LI HImiR-20419 F35 , BT PI3K/AkyRunx 23 i, {2
PR A5 R R T, S 2 R —FORIE T ALY
LAY, ATE A M miRNA—-19a—5p, fIHIIT-17A mRNA
FVEE (1235, DN T 8 446 228 I B T B WA /D BSURSE 780 17 - o,
EIEE AP VE S, ZHU WAFeHlt FSS EI B 3 837 ONFH
ZINERBARY, R FH A 75 Bk AL 70 45 SR 3R B, ke 75tk L]
it EAmiR-185-3pMIRiE, FiMmiR-129b—5pHy Rk, Ty
PI3K/AKtf5 5 0 , (i 15 B A B A7 T35 5 43k , 003 il -4 A
AR R ERES NS 5ER WSS E W I8 A a8/
T AL T 3 2o 1 ] BMS Cs A AN A A miRNA-70893K , 1L
EONFHA A MUAE 7K AR K, 30 98 4 it R -, 24
LB R/ NRE R KT R BT i, W EZZONFH Y i
Jr ), B R 2K AN R R S M A 22— L BB TR I miR -
125b=5p, S E ALP .OCNFTRUNX 245 i 1 F i 2R 1k, i
PRE A TR 4t R R o3 Ak

412 RIHFBMSCsHUE b R EAAMNE BH R A
FEFH o L8 K 22 M A2 DA B sl SRR R 4R B A W 76 P A 4, T
it FAmiR-21, BIE PI3K/AKGE 2 7E R B PRSP RUNX2
FIBMP23 3k , i BUIEFR 5P CEBPa FIPPARyZR 5 , T2
HEBMSCs [ BB oAb, BE Ak, B 5 R 220 BE 3 o 90 il miR -
210-3pFik, FIASCARA3ZRIA , IR BMSCs Y1 71 F L
B Ak, 020 AR T A R AT R SR T R L T
miR-23a, JIE Wnt/B—catenin{F 5 1 , #& = ALPIG M, SR i
MEVR AR 1 I Runx2 2835 , 9 /0 NI T 18 A0 40 i H-ih = R K
-, [ B S AT B T IR S T A 1 B P 2 A —y
CCAATHSIR A5G H-aFR3E , R BMSCRYBLE 53k,
FHIRE A U B SEraR ], B S AR ARG T R ImiR-335-5p
MYFRIR, IHIPTENMZRIL , IR BMSCHY LB 431k A,
FEFFET R L MmiR-335-5pKib  fE AR ERFRUNX2 |
OPNZ IR, SN BT AARE R U AL B/ N, S b A
B HLUE LA K BMSCs 1 BB k0, miR-488 FE AN B IR 175
5, BEE ) Runx2, B MOsx FTALPFETR , TR #EBMSCs
B 43P Al e 2 Tl A Dl miR 206, B R 1143
B35, BT Runx2 . 0SX .OCNAI'EHF 85 H (OPN ) 35 , AT
{RHEBMSCsHE AR H- 53467, o FF R B Rl il miRN A -
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3513R35 R LEAE RDZARFRIA , TR #HBMSCs Y3458 5
B S, T B HE TR VR B 1 T P miR-34c-5pRik , R
miR-34c-SpXTMDM4RNT, I B 412U h C/EBPFIPPARYy
5 , AT 38 2 310 1 BMSCs Y BLIR 434k 5K 22 £ ONFHUSL, 22
I ALRE FEAR A BUBMSCs H 7] V5L 57 T8 235 Ay B 2 11 7 b K T
F2(TCIF2) Wik, fE i Runx2 ALPHY £ 15, [ miR-34a
Ry Rk, W TGIF2 (4 R 3k , NI {2 i BMSCsH 41k , IF
P L AR 2 Akl i 38 2% U7 BE 38 8T Rl miR—122-5p , 41l
TISPRY2133A , T iU 73 AKAH SE FFl F Runx2 Fl Osterix Y %
SRR, BEAR R U A B AH 5 R F PPARY2 FI CEBP—aZK -, M
A2 HEBMSCs R oAk, Tl g o4k,
4.1.3 I BCE AT R SRR T 2 R Y R
PER A, T 38 2 41091 SP1/miR-200b—3p#ll , #5 Wnt/B—catenin
55 3E I, BEARONFH /N BURE 8 1278 M Bax R K 2R 1 -3
(cysteine aspartic acid specific protease 3,Caspase—3)FIHER
-9 cysteine aspartic acid specific protease 9,Caspase-9)
Foik PRI TR H Bel-2335 , T S5 A A g b
B AN TS, B ONFHL IF Mk B, B L phfgil it T
PmiR-206, #4075 HIF-1o/BNIP3% , AT 25 40 At ) 5, 30
B E AR T, UE I A ONFHL B0RS A1) 2 B Ao 0K 22 H
AT miR- 12249335 , W75 Hippof5 53 # , 0 I8
PGS, 0 ) 00 0 e AR oy 3 a4 o
miR —140-5p A £ 1k , #1 [1) BMP2, {£ #£ OCN .OPC \RUNX2 .
TGF-RAIZIE , Tl BB 20 M A T,
42 PHEKRE P H L 5 AEmIRNAR S A R, B
FEFE AT LA TME B B A R M miRNA 3350 335, IR
Wl 1 B R 5 19 ONFH K BRUIAL TR HP 1M 42 98115 2R R VEGE
B & i, T = BMECSIERS RE ) LM A BUE RE 1=, B i Ab
S B TR AE A 1 I MiR - 18a—5p 2835 , 1T HIF 1o/ VEGF %
5 I, PR B A U DY B AL B 1 B R R A
ARy, IO i 8 26 B R A S BB BB eI AN AR B
AP0 ONFH R BB E Sk 21 miR - 135b-5p R ik , {2
RUNX2Z& A , BEARI K A 2 2 URUKT- 42 MK VEGE . — %
LR ATE BCPAE , M HEONFHA BB L 1 ZUB ™,
5 BREERE

A mIRNA R A3 28 52 Wi s 5 40 6 0 15 40 e 1%
& T REATE R T B AR T A AR miRN A RE 38 228 14
T HRE S RN A A B, AR i BB L AMIMAR miRNATE (S 5
I O R TP N A 0 N B e R 2
U (ML, 20 BE R BR HIS WRTRY T B LT ) SR M A A
Z TR IR S0 WA 1T R SE S AH G B 15 538 B VA YT ONFH, R
X BB AR A/ FIAILAR R A AE ONFHIA YT Hh 4 1 FH B4
T A8 B H HA X S L 0 BRARAT AR A IR L R SR R BF A 5
BERASRIT I (4 £ ) 22 ek R IR 2 2S5l 1 A=
Yo BOHAE B RS TR P G B T , DARE Ry S i A i 20
AU B 5 (I PRI 3 AL 0 S 30 S Atk L I Ab 38 T
BT R B 22 (11 PR ARG PRI R B8 E S IR YT ONFH )
B A PEFR SO R 25 1E VR T ONFH 5 T B 20 47 1) AL 3
N RE A R R 5% o P 24 e L TP miRN A, S 2F 1R 2 ik
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